Classification and filtering of spectra: A case study in mineralogy
نویسندگان
چکیده
The ability to identify the mineral composition of rocks and soils is an important tool for the exploration of geological sites. Even though expert knowledge is commonly used for this task, it is desirable to create automated systems with similar or better performance. For instance, NASA intends to design robots that are sufficiently autonomous to perform this task on planetary missions. Spectrometer readings provide one important source of data for identifying sites with minerals of interest. Reflectance spectrometers measure intensities of light reflected from surfaces over a range of wavelengths. Spectral intensity patterns may in some cases be sufficiently distinctive for proper identification of minerals or classes of minerals. For some mineral classes, carbonates for example, specific short spectral intervals are known to carry a distinctive signature. Finding similar distinctive spectral ranges for other mineral classes is not an easy problem. We propose and evaluate data-driven techniques in two stages: first, evaluating algorithms to identify which components are probably present in a given rock; second, trying to improve this classification by automatically searching for spectral ranges optimized for specific classes of minerals. In one set of studies, we partition the whole interval of wavelengths available in our data into sub-intervals, or bins, and use a genetic algorithm to evaluate a candidate selection of subintervals. As an alternative to these computationally expensive search techniques, we present an entropy-based heuristic that gives higher scores for wavelengths more likely to distinguish between classes. Results are presented for four different classes, showing reasonable improvements in identifying some, but not all, of the mineral classes tested.
منابع مشابه
Evaluating the effect of using different reference spectra on SAM classification results: an implication for hydrothermal alteration mapping
This research was performed with the objective of evaluating the accuracy of spectral angle mapper (SAM) classification using different reference spectra. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital images were applied in the SAM classification in order to map the distribution of hydrothermally altered rocks in the Kerman Cenozoic magmatic arc (KCMA), Iran...
متن کاملSub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran
Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...
متن کاملDetection of Melanoma Skin Cancer by Elastic Scattering Spectra: A Proposed Classification Method
Introduction: There is a strong need for developing clinical technologies and instruments for prompt tissue assessment in a variety of oncological applications as smart methods. Elastic scattering spectroscopy (ESS) is a real-time, noninvasive, point-measurement, optical diagnostic technique for malignancy detection through changes at cellular and subcellular levels, especially important in ear...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملکاربرد طیف سنج بازتابی (nm 2500-400)به عنوان ابزاری نوین در بررسیهای کانیشناسی زیستمحیطی (بررسی موردی: جنوب غرب استرالیا)
Acid and saline seeps are an increasing problem in most parts of the World and Australia as well. They are areas of bare soil or reduced crop production. Recent laboratory, field, and remote sensing studies have explored the use of visible to short – wave infrared (VIS- SWIR; 400-2500 nm) reflectance data for characterizing the mineralogy of mine wastes, surface mineralogy of acid-saline affect...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 6 شماره
صفحات -
تاریخ انتشار 2002